Wintersemester 2016/2017 Biomolecular Engineering/Nanobiophysics Module

LECTURE 2: MOLECULAR DYNAMICS

LECTURE 2: OUTLINE MOLECULAR DYNAMICS

- MD pipeline and principles
- Minimization
- > MD with fixed physico-chemical parameters
- Energy calculations
- > Biased MD
- Special cases of MD
- > MD software
- Case study: fluorinated amino acids

MOLECULAR DYNAMICS PIPELINE

$$V(\vec{r}) = \sum_{bonds} K_r (r - r_{eq})^2 + \sum_{angles} K_{\theta} (\theta - \theta_{eq})^2 + \sum_{dihedrals} \frac{V_n}{2} (1 + \cos[n \phi - \gamma]) + \sum_{i < j}^{atoms} (\frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^{6}}) + \sum_{i < j}^{atoms} \frac{q_i q_j}{\epsilon R_{ij}}$$

MINIMIZATION

> ΔG of the system decreases iteratively

Criteria:

$$\delta G_n - \delta G_{n-1} | < \epsilon_1$$

$$RMSD_{n,n-1} < \epsilon_2$$
$$RMSD = \sum_{i=1}^{N} \sqrt{(\vec{r_n} - \vec{r_{ref}})^2}$$

> Algorithms:

- Steepest descent

$$\vec{r_n} = \vec{r_{n-1}} + \lambda_n \frac{\vec{F_n}}{F_n}; \lambda_n > 0$$

$$\vec{r_n} = \vec{r_{n-1}} + \lambda_n (\vec{F_n} + \frac{F_n^2}{F_{n-1}^2} \frac{\vec{F_{n-1}}}{F_{n-1}})$$

- Conjugate gradient
- Their combination (first SD, then CG)

MINIMIZATION vs MD

Minimization: one minimum

MD: potentially several minima (sampling challenge!)

Experiment: mixture

MD vs EXPERIMENT

> Two rotamers in X-ray:

- High resolution (TYRA, TYRB records in the PDB)
- Low resolution: average structure (TYR)

For some properties MD resolution could be higher then experimental

MD: VERLET INTEGRATION

• *Verlet integration* is a numerical method frequently used to integrate Newton's equations of motion:

$$\vec{r}(t+\delta t) = \vec{r}(t) + \vec{v}(t)\delta t + \vec{a}(t)\frac{\delta t^{2}}{2} + \vec{b}(t)\frac{\delta t^{3}}{6} + O(\delta t^{4})$$

$$\vec{r}(t-\delta t) = \vec{r}(t) - \vec{v}(t)\delta t + \vec{a}(t)\frac{\delta t^{2}}{2} - \vec{b}(t)\frac{\delta t^{3}}{6} + O(\delta t^{4})$$

$$\vec{r}(t+\delta t) = 2\vec{r}(t) - \vec{r}(t-\delta t) + \vec{a}(t)\delta t^{2} + O(\delta t^{4})$$

$$\vec{a}(t) = \frac{1}{m}\vec{F}(\vec{r}(t))$$

$$\vec{r}(t+\delta t) = 2\vec{r}(t) - \vec{r}(t-\delta t) + \frac{1}{m}\vec{F}(\vec{r}(t))\delta t^{2} + O(\delta t^{4})$$

$$\vec{v}(t) = \frac{\vec{r}(t+\delta t) - r(t+\delta t)}{2\delta t}$$

$$\vec{v}(t) = \vec{r}(t) + \vec{v}(t+\frac{1}{2}\delta t)\delta t; \qquad \vec{v}(t+\frac{1}{2}\delta t) = \vec{v}(t-\frac{1}{2}\delta t) + \vec{a}(t)\delta t$$

SOLVENT IN MD

In vacuo – no solvent

- > Implicit solvent continuous solvent with averaged macroscopic properties
- > Explicit solvent each solvent molecule is given explicitly

PERIODIC BOUNDARY CONDITIONS

 PBC: each cell unit is repeated in space infinite number of times to provide space continuity

STATISTICAL ENSEMBLES IN MD

> NTP: constant number of particles, temperature, pressure

> NTV: constant number of particles, temperature, volume

> NVE: constant number of particles, volume, full energy of the system

TEMPERATURE COUPLING

System:

NTP, NTV

Thermostat $(T=T_{\alpha})$

Weak (Berendsen) coupling

$$\frac{dT}{dt} = -\alpha (T - T_0); \alpha > 0$$

Andersen coupling

Imaginary collisions randomize velocities

Langevin coupling

More frequent than physical collisions randomize velocities from M-B distribution

PRESSURE COUPLING

Berendsen coupling

$$\frac{dp}{dt} = -\alpha (p - p_0); \alpha > 0$$

Density convergence

CUT-OFF

Number of atomic pairs ~ (cut_off)⁶

RESTRAINTS IN MD

- > Harmonic constraints: F~(X-X₀)²
 - Bonds
 - Angles
 - Dihedrals
 - Distances between atoms
 - CM distances
- Freezing (fixing atoms)

COUNTERIONS

q≠0

Electrostatics wrong!

q=0, Na⁺/Cl⁻ added

IONIC STRENGTH AND pH IN MD

- > Molarity calculations:
 - ~ 10³ water molecules
 - ~ 1mM salt concentration

- ~ 10 cationic and anionic atoms added (Na⁺ and Cl⁻, f.i.)
- > Protonation state is manually adjusted (depending on pK_a) but only ONCE:
 - Asp, Glu, Lys, Arg two residue libraries
 - His three residue libraries

PARTICLE MESH EWALD METHOD

 Particle Mesh Ewald method is utilized for electrostatic calculations in PBC. PME uses (Ewald) summation, which replaces the summation of interaction energies in real space with an equivalent summation in Fourier space. This increases speed and helps summation's convergence.

SHAKE ALGORITHM

 SHAKE algorithm constraints all motions of covalently bound hydrogens since these motions are the fastest (only dynamics!)

EXAMPLE: STANDARD MD RUN

Application of the force field

First minimization with solute fixed

Second minimization of the whole system

MD: heating from 0 to T_o

MD: putting the constant pressure

MD simulation in NTP ensemble

ENERGY CALCULATIONS

- > MM-PBSA (Molecular Mechanics Poisson Boltzmann Surface Area)
- Free energy perturbation
- > Biased molecular dynamics
- Normal mode analysis for entropy calculations

MM-PBSA

Molecular Mechanics-Poisson-Boltzmann Surface Area

 $\delta G = \delta G_{vac} + \delta G_{solv}; \delta G_{vac} = \delta G_{ele} + \delta G_{vdw}$ \square Molecular Mechanics (force field)

$$\delta G_{solv} = \delta G_{el} + \delta G_{nonel}$$

 $\delta G_{nonel} \sim ASA$

$$\delta G_{el} = \frac{1}{2} \int \left(\rho(r) \phi(r) \right)$$

 $\varphi(r) = -4\pi\rho(r) + \kappa^2 \epsilon(r) \varphi(r) - Poisson-Boltzmann equation$

$$G_{el,GB} = \frac{1}{8\pi} \left(\frac{1}{\epsilon_0} - \frac{1}{\epsilon}\right) \sum_{i < j}^{N} \frac{q_i q_j}{f_{GB}} - Generalized Born approximation$$

$$f_{GB} = \sqrt{r_{ij}^2 + a_{ij}^2 e^{-D}}$$
 $D = (\frac{r_{ij}}{2a_{ij}})^2, a_{ij} = \sqrt{a_i a_j}$

VdW surface

MM-PBSA energies: mean and standard deviation

Coordinates from a the same SINGLE trajectory are used for Complex, Receptor and Ligand

Strong dependence on particular frames

$$> \delta G_{binding} = \delta G_{complex} - (\delta G_{receptor} + \delta G_{ligand})$$

MM-PBSA

- Components: Ele, VDW, reaction field, solvation, total
- > Works well for complexes of bigger molecules
- Neglection of explicit solvent molecules
- r~0.4-0.9 depending on a predominant interaction type/frames choice
- > Reliable relative but not absolute energies
- Comparable values for similar systems

Differences (Complex	Decenter Ligend).			7	
Energy Component	Average	Std. Dev.	Std. Err. of Mean		60
BOND	0.0000	0.0001	0.0000		
ANGLE DIHED	-0.0000 -0.0000	0.0001 0.0001	0.0000 0.0000	nol i	50
VDWAALS EEL 1-4 VDW	-47.6566 -577.7110 0.0000	5.0198 69.5639 0.0001	0.5612 7.7775 0.0000	kcal/i	40
1-4 EEL EPB ECAVITY	-0.0000 580.9776 -5.8694	0.0000 66.2979 0.2482	0.0000 7.4123 0.0278	exp),	30
	005 0070	00.0007	7 7010	ы́	
DELTA G gas DELTA G solv	-625.3676 575.1082	68.8867 66.3250	7.4154		
DELTA G binding =	-50.2594 +/-	8.4920	0.9494	-	
5					0 10 20 30 40 50 60 70
					E(MM-PBSA), kcal/mol

MM-PBSA per residue decomposition

Contribution of each individual residue to binding

Fast screening of possible mutants

> Alanine scanning

Energy Decomposition Analysis (All units kcal/mol): Generalized Born solvent

DELTAS:

Total Energy Decomposition:

Residue	Location	Internal	van der Waals	Electrostatic	Polar Solvation	Non-Polar Solv.	TOTAL
ILE 217 VAL 218	R ILE 217 R VAL 218	0.000 +/- 4.933 0.000 +/- 3.830	-0.004 +/- 1.893 -0.008 +/- 1.862	0.059 +/- 1.796 -0.056 +/- 3.153	-0.048 +/- 1.107 0.111 +/- 2.434	0.000 +/- 0.085 0.000 +/- 0.006	0.008 +/- 5.690
ARG 219	R ARG 219	0.000 +/- 5.914	-0.037 +/- 2.388	-4.663 +/- 14.675	4.807 +/- 11.967	-0.001 +/- 0.169	0.107 +/- 19.982
SER 220	R SER 220	0.000 +/- 2.907	-0.052 +/- 1.536	-0.038 +/- 6.548	0.191 +/- 5.590	-0.001 +/- 0.069	0.100 +/- 9.216
CYX 221	R CYX 221	0.000 +/- 2.618	-0.053 +/- 1.337	-0.055 +/- 2.409	0.218 +/- 1.711	0.000 +/- 0.008	0.111 +/- 4.168
LYS 222	R LYS 222	0.000 +/- 4.188	-0.064 +/- 2.145	-10.357 +/- 8.479	10.493 +/- 6.943	0.000 +/- 0.094	0.072 +/- 11.927
CYX 223	R CYX 223	0.000 +/- 2.960	-0.060 +/- 1.571	0.146 +/- 1.609	-0.095 +/- 0.654	0.000 +/- 0.000	-0.009 +/- 3.774
SER 224	R SER 224	0.000 +/- 3.123	-0.019 +/- 2.079	11.115 +/- 8.194	-10.999 +/- 7.466	0.000 +/- 0.036	0.097 +/- 11.703
ALA 225	R ALA 225	0.000 +/- 3.207	-1.240 +/- 1.304	-30.420 +/- 7.670	35.837 +/- 7.577	-0.337 +/- 0.221	<u>3.840 +/- 1</u> 1.325
VAL 226	R VAL 226	0.000 +/- 3.875	-2.888 +/- 1.996	0.285 +/- 2.212	0.382 +/- 2.203	-0.569 +/- 0.090	-2.790 +/- 5.362
LYS 227	R LYS 227	0.000 +/- 4.877	-0.474 +/- 1.885	-22.334 +/- 12.328	23.168 +/- 13.005	-0.011 +/- 0.206	0.349 +/- 18.668
PHE 228	R PHE 228	0.000 +/- 4.286	-4.959 +/- 1.641	-2.484 +/- 2.101	3.943 +/- 1.951	-0.849 +/- 0.083	-4.348 +/- 5.412
PR0 229	R PR0 229	0.000 +/- 3.396	-1.093 +/- 1.151	-6.375 +/- 1.701	4.238 +/- 1.192	-0.180 +/- 0.048	-3.410 +/- 4.144
GLN 230	R GLN 230	0.000 +/- 4.028	-0.689 +/- 1.402	2.560 +/- 2.847	-0.989 +/- 1.394	-0.007 +/- 0.044	0.874 +/- 5.314
LEU 231	R LEU 231	0.000 +/- 4.078	-1.093 +/- 2.054	-0.185 +/- 1.777	0.327 +/- 0.594	-0.086 +/- 0.053	-1.036 +/- 4.936
CYX 232	R CYX 232	0.000 +/- 2.802	-0.048 +/- 1.387	0.081 +/- 1.366	-0.197 +/- 0.590	0.000 +/- 0.000	-0.163 +/- 3.463
LYS 233	R LYS 233	0.000 +/- 4.619	-0.014 +/- 2.263	-12.038 +/- 11.108	11.972 +/- 10.286	0.000 +/- 0.045	-0.080 +/- 15.989
PHE 234	R PHE 234	0.000 +/- 4.331	-0.021 +/- 1.933	0.100 +/- 1.838	-0.113 +/- 1.039	0.000 +/- 0.039	-0.034 +/- 5.192
CYX 235	R CYX 235	0.000 +/- 2.724	-0.003 +/- 1.324	-0.005 +/- 3.402	0.003 +/- 2.498	0.000 +/- 0.066	-0.005 +/- 5.195
ASP 236	R ASP 236	0.000 +/- 3.692	-0.002 +/- 1.608	11.143 +/- 13.493	-10.994 +/- 12.507	0.000 +/- 0.152	0.146 +/- 18.834
VAL 237	R VAL 237	0.000 +/- 3.260	-0.001 +/- 1.807	0.080 +/- 2.382	-0.078 +/- 1.820	0.000 +/- 0.084	0.001 +/- 4.784

ENTROPY CALCULATIONS

 $\delta S = \delta S_{translational} + \delta S_{rotational} + \delta S_{vibrational}$

> Translational and rotational entropies correspond to the number of freedom degrees

- Vibrational entropy is derived from the trajectory:
 - Vibrations are represented in matrix
 - Matrix is diagonalized (normal modes)
 - Eigenvectors and eigenvalues are calculated
 - Entropy is derived related to the cut-off for eigenvalues
- Very expensive computation, applicable for relatively small molecules

FREE ENERGY PERTURBATION

$$\delta G = G(\lambda = 1) - G(\lambda = 0) = \int_{0}^{1} \left(\frac{\delta V}{\delta \lambda}\right)_{\lambda} d\lambda - Thermodynamic integration$$

REPLICA EXCHANGE MD

> RE (replica exchange) MD: states , and , by T, and T;:

$$p = min(1, \frac{\exp(-(\frac{\delta G_j}{kT_i} - \frac{\delta G_i}{kT_j}))}{\exp(-(\frac{\delta G_i}{kT_i} - \frac{\delta G_j}{kT_j})}) = min(1, \exp(\delta G_i - \delta G_j)(\frac{1}{kT_i} - \frac{1}{kT_j}))$$

- N replicas of the same structure
- Implicit solvent
- More effective sampling
- Computationally very expensive
- Principal component analysis

REMD: EXAMPLE 1

REMD: EXAMPLE 2

- > BMP-2 dimer
- > 13 aa free, rest frozen
- ➤ 12 replicas
- ≻ 100 ns

BIASED MOLECULAR DYNAMICS

Additional potential is applied to the system

Speeding up the transition between A and B or

search for global minimum

> Examples:

- Targeted MD (X changes from X_1 to X_2), ~ (100 trajectories)

 $\delta G(X_1) - \delta G(X_2) = \langle Work \ of \ the \ applied \ force >$

TARGETED MD-BASED DOCKING: EXAMPLE

- Dynamic Molecular Docking method
- Explicit solvent
- Fully flexible receptor and ligand
- > MM-PBSA scoring for an ensemble of structures

ACCELERATED MOLECULAR DYNAMICS

$$V(\vec{r}) = \sum_{bonds} K_r (r - r_{eq})^2 + \sum_{angles} K_{\theta} (\theta - \theta_{eq})^2 + \sum_{dihedrals} \frac{V_n}{2} (1 + \cos[n\phi - \gamma]) + \sum_{i < j}^{atoms} (\frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^{6}}) + \sum_{i < j}^{atoms} \frac{q_i q_j}{\epsilon R_{ij}}$$

 $V_a(\vec{r}) = V(\vec{r}), V(\vec{r}) \ge E_b$

$$V_{a}(\vec{r}) = V(\vec{r}) + \delta V(\vec{r}), V(\vec{r}) \leq E_{a}$$

 $\delta V(\vec{r}) = \frac{(E_b - V(\vec{r}))^2}{E_b - V(\vec{r}) + \alpha}$

Inverted AMD

- Selective AMD
- Replica Exchange AMD
- > Adaptive AMD

> Ab initio AMD

BROWNIAN MD

> Langevin dynamics: degrees of freedom are replaced with stochasticity

$$M\frac{d^{2}\vec{r}}{dt^{2}} = -d^{2}\frac{V(\vec{r})}{dt^{2}} - \gamma M d\frac{\vec{r}}{dt} + \sqrt{2\gamma kTM} R(t); \quad < R(t) > = 0; < R(t)R(t') > = \delta(t-t')$$

> Browninan dynamics:

$$0 = -d^2 \frac{V(\vec{r})}{dt^2} - \gamma M d \frac{\vec{r}}{dt} + \sqrt{2\gamma kTM} R(t)$$

Longer time scales than normal MD: μs

- > Bigger molecules
- Implicit solvent

COARSE-GRAINED MD

MD (Force field)

All-atomic

Coarse-grained

COARSE-GRAINED EXAMPLES

COARSE-GRAINED EXAMPLE FOR GAGs

All-atomic

Coarse-grained

- > 1 pseudoatom = several real atoms
- New atomic types
- New atomic charges
- > New parameters: bond, angle, dihedral, L-J
- Global and local properties of CG should reproduce AA

CG MD: PARAMETERS DERIVATION

> Charges for pseudoatoms: empirical or AA-consistent

Bonds and angles for pseudoatoms: harmonic approximation

$$\Delta G = K(X - X_0)^2; \rho = Ae^{\frac{-\Delta G}{kT}} = \frac{e^{-\frac{(X - X_0)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma} \qquad K = \frac{kT}{2\sigma^2}; T = 300K$$
$$\Delta G = K(\alpha - \alpha_0)^2; \rho = Ae^{\frac{-\Delta G}{kT}} = \frac{e^{-\frac{(\alpha - \alpha_0)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$$

CG MD: PARAMETERS DERIVATION

Dihedral angles for pseudoatoms

 $\Delta G = \frac{A_{barrier}}{2} (1 + \cos(N\phi - \rho_0))$ A_{barrier}: potential barrier height; N: periodicity; ρ_0 : phase

CG MD: PARAMETERS DERIVATION

Lennard-Jones parameters for pseudoatoms

 $\Delta G = \frac{A}{r^{12}} - \frac{B}{r^6}$

- AA molecules with 0 partial charges
- SMD: r(CM-CM) ∈ [r₀ − 0.5; 15], in vacuo, 100 kcal/(mol Å), 1000 steps, 10 ns
- PMF is corrected by E_{VDW} for unbound molecules
- A and B are extracted by interpolation

Example: N-sulfate (HNH-SO₃)

CG MD: APPLICATION

- > Multimacromolecular complexes
- > Membranes
- Self-organizing systems/folding

MD: TIME/LENGTH SCALES

➢ From ps (10⁻¹²) to ~10 µs (10⁻⁵ s)

> Able to study

- Mobility of molecules / equilibrated complexes
- Atomic details of interactions (H-bonds, vdW contacts, salt-bridges)
- Thermodynamics of equilibrated systems
- Folding of small proteins
- > Unable to study :(
 - Kinetics of molecular association (in general)
 - Directly catalytical reactions

> 1 ns of MD takes from hours to days

 \succ Length: from Å to ~ 1000 Å

QM/MM

Quantum effects are indispensable (f.i.: enzymatic reactions,

QM

- conformational analysis)
- System is divided into QM and MM part
- Challenge for atoms in the QM/MM border
- Kinetics are accessible

MM

Computationally expensive

QM/MM: EXAMPLE

Reaction of proton transfer in two steps

Structures of substrates and products

- Energetic properties of transitional complex
- Consideration of protein environment

MD: TIME/LENGTH SCALES

FORCE FIELDS IN MD

≻ ...

MD SOFTWARE

- > GROMACS (Open Source)
- > AMBER
- > CHARMM
- > NAMD (Open Source)
- > TINKER

MD SCALING, CALCULATION TIME

Scalability: how much you speed up the parallel calculations, when increase number of cores used

Scalability = $\frac{t_{1\,core}}{t_{n\,cores}}$

Example: 10ns, ~10000 atoms, AMBER 10, 32 cores, 2 days

DRESDEN SUPERCOMPUTER CENTER

http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/hpc

HIGH PERFORMANCE COMPUTING (HPC) AT ZIH

DRESDEN SUPERCOMPUTER CENTER

Bull HPC-Cluster (Taurus)

- For highly parallel HPC applications
- Island 1: 4320 cores Intel E5-2690 (Sandy Bridge) 2.90GHz
- Island 2: 704 cores Intel E5-2450 (Sandy Bridge) 2.10GHz + 88 NVidia Tesla K20x GPUs
- Island 3: 2160 cores Intel X5660 (Westmere) 2.80GHz
- SMP nodes with 1TB main memory
- 1 PB SAN disk storage
- Bullx Linux 6.3, batch system Slurm
- 137 TFlop/s total peak performance (w/o GPUs)

Megware PC-Farm (Atlas)

- For capacity computing
- 5888 cores AMD Opteron 6274 2,2 GHz
- 13 TB memory
- 92 nodes with 64 cores each and 64 to 512 GB memory
- 79 TB SAN disk storage
- SuSE Linux Enterprise Server 11, batch system LSF
- 51,8 TFlop/s peak performance

CASE STUDY: FLUORINATED AMINO ACIDS

- > Aim: theoretical analysis of fluorinated amino acids in protein environments
- Object: fluorinated amino acids
- Experimental data: calorimetry, HPLC

NON-NATURAL AMINO ACIDS

Improved properties not feasible within natural proteins

FLUORINE UNIQUE PROPERTIES

F: 1S²2 2S²2 2P⁵5

Electronegativity (χ)

Atomic radius, Å

 $\chi_{\rm A} - \chi_{\rm B} = ({\rm eV})^{-1/2} \sqrt{E_{\rm d}({\rm AB}) - [E_{\rm d}({\rm AA}) + E_{\rm d}({\rm BB})]/2}$

> Theoretical characterization of fluorinated amino acids

Study of fluorinated amino acids in protein environments

FLUORINATED AMINO ACIDS

AA	R-group
Eal	-CH ₂ -CH ₃
MfeGly	-CH ₂ -CFH ₂
DfeGly	-CH ₂ -CF ₂ H
TfeGly	-CH ₂ -CF ₃
DfpGly	-CH ₂ -CF ₂ CH ₃

Non-natural residue libraries for AMBER ff (RESP charges, 6-31G*, α /Ext).

SINGLE AA ANALYSIS EXAMPLE

SECONDARY STRUCTURE PROPERTIES

HYDRATION ENERGY CALCULATIONS

HYDRATION ENERGY CHANGE DUE TO DEFLUORINATION

PARALLEL COILED COIL SYSTEM

MD vs CD: COILED COIL UNFOLDING

PACKING AT a16 AND d19 POSITIONS

$$d(C_{\beta}-C_{\beta})_{a16} - d(C_{\beta}-C_{\beta})_{d19} \sim 1\text{\AA}$$

Fluorine substitution effect: 1. polarity 2. steric demand 3. packing

LECTURE 2: OUTLINE MOLECULAR DYNAMICS

- MD pipeline and principles
- Minimization
- > MD with fixed physico-chemical parameters
- Energy calculations
- > Biased MD
- Special cases of MD
- > MD software
- Case study: fluorinated amino acids

