Wintersemester 2016/2017 Biomolecular Engineering/Nanobiophysics Module

LECTURE 3: MODELLING SOLVENT

LECTURE 3: MODELLING SOLVENT

- Water unique properties
- Water and biomolecular systems
- Implicit solvent and Poisson-Boltzmann methodology
- Explicit solvent models
- Grid Inhomogeneous Solvation Theory (GIST)
- Solvent challenge in docking
- Water in protein-protein interfaces
- Case studies:
 - MD study of the role of water in protein-protein interfaces
 - Introduction of solvent information for protein contacts prediction
 - Inclusion of water in GAGs docking to proteins

WATER UNIQUE PROPERTIES

- Three-dimensional tetrahedral H-bonding networks
- > High boiling and freezing temperatures, vaporization enthalpy, surface tension
- Fluidity increases with increased pressure
- High dielectric constant (~80)
- Diverse crystal forms
- Volumetric anomalities (ice density < liquid water density)</p>
- > $2H_2O \leftrightarrow H_3O^+ + OH^-$; K_w = 10⁻¹⁴ at 25C
- > 1.52% of Earth mass, 90% of human body mass

WATER CRYSTALS

Wilson Bentley, 1902

WATER AND BIOMOLECULAR SYSTEMS

Structural conservation

> Dynamics

Folding

Molecular recognition

Catalytic activity

COMPUTATIONAL TREATMENT OF SOLVENT

- In vacuo no solvent
- Implicit solvent continuous solvent with averaged
- macroscopic properties
- Explicit solvent each solvent molecule is given explicitly

IMPLICIT SOLVENT

 No individual water molecules, but the space has macroscopic properties, which, on average, reproduce effect of solvation

> Dielectric constant ϵ is the same for the whole space

- -ε=const
- ε = A/r, r distance from solute
- ϵ = A/r², r distance from solute
- Speeding up calculations
- > No PBC (periodic boundary conditions)
- Continuous model
- Does not well reproduce local properties
- No explicit hydrogen bonding network

MM-PBSA

Molecular Mechanics-Poisson-Bolzmann Surface Area

 $\delta G = \delta G_{vac} + \delta G_{solv}; \delta G_{vac} = \delta G_{ele} + \delta G_{vdw}$ \square Molecular Mechanics (force field)

$$\delta G_{solv} = \delta G_{el} + \delta G_{nonel}$$

 $\delta G_{nonel} \sim ASA$

 $\delta G_{el} = \frac{1}{2} \int (\rho(r) \phi(r))$

ASA Water probe (r=1.4 Å)

VdW surface

 $\nabla \epsilon(r) \nabla \phi(r) = -4\pi \rho(r) + \kappa^2 \epsilon(r) \phi(r) - Poisson - Boltzmann equation$

$$G_{el,GB} = \frac{1}{8\pi} \left(\frac{1}{\epsilon_0} - \frac{1}{\epsilon}\right) \sum_{i < j}^{N} \frac{q_i q_j}{f_{GB}} - Generalized Born approximation$$

$$f_{GB} = \sqrt{r_{ij}^2 + a_{ij}^2 e^{-D}} \qquad D = \left(\frac{r_{ij}}{2a_{ij}}\right)^2, a_{ij} = \sqrt{a_i a_j}$$

EXPLICIT SOLVENT MODELS

- Geometry: 2 internal parameters (O-H bond length and H-O-H angle)
- Dimensionality
- Number of points used (SPC, TIP3, TIP4, TIP5, TIP6)

- Flexibility
- > Ability to reproduce H-bonding networks
- > Ability to reproduce certain macroscopic properties
- Polarization

GRID INHOMOGENEOUS SOLVATION THEORY

GIST's gridded water properties in a binding site.

- Explicit solvent
- > Enthalpy: potential at each analyzed frame
- Entropy: directly from the probabilities
- Reference: bulk solvent at normal conditions
- Challenge for convergence

GRID INHOMOGENEOUS SOLVATION THEORY: OUTPUT PARAMETERS

- Water oxygen distribution g(O)
- Water hydrogen distribution g(H)
- E(solute-water)
- E(water-water)
- S(translational)
- S(orientational)
- Water induced dipoles
- Number of neighbouring waters
- > Average tetrahedral order parameters

$$q_{tet}(i) = 1 - \frac{3}{8} \sum_{j=1}^{3} \sum_{k=j+1}^{4} \cos(\phi_{ijk} + \frac{1}{3})^2$$

GRID INHOMOGENEOUS SOLVATION THEORY: EXAMPLES

E(solute-water)

E(water-water)

GRID INHOMOGENEOUS SOLVATION THEORY: EXAMPLES

Full free energy (E+S)

SOLVENT CHALLENGE IN DOCKING

- Implicit solvation
- Explicit solvation:
 - receptor
 - ligand
- Crystal water molecules
- Calculated water molecules:
 - displaced water molecules
 - 'new' water molecules
- > Approaches:
 - Monte Carlo
 - Systematic search

PROTEIN INTERFACES

PROTEIN INTERFACES

 Protein-protein interface is the part of the space, where protein-protein interaction occurs

SOLVENT IN PROTEIN INTERFACES

SCOWLP.ORG

SCOWLP Iscr Search. 0				tutorial methods downloads contact							
Search options: click here											
Root » @ All beta proteins » @ Concanavalin A-like lectins » @ Concanavalin A-like lectins » @ Legume lectins » @ BR 17077 » @ IF 17078											
This interface covers 50 interacting domains (see below). Click 🖧 for structural analysis at atomic level and use the controller to the right to mark the different is residue-interactions.	iow interaction pattern 🛛 🗣 Dov	nioad a list of PDB-id's									
(IF 17078, BR 17077, Similarity Cutoff 0)											
A O ICIN-CD A ETTVSFNFNSF.SEGNPAINFOGDVTVLSNGNIQLTNL NKVNSVGRVLYAMPVRINSSATGNVASFLTSFSFENKDIK - DYDPADGIIFFIAPEDTOIPAGSIGGGTLGVSDTK GAGHFVGVEFDTYSNSEYNDPPTDHVGIDVNS											
A - 1ciw-DC AETVSFNFNSFSEGNPAINF06DVTVLSNGN10LTNLNKVNSV6RVLYANPVRIWSSAT6NVASFLTSFSFENKD1K-DYDPAD6IIFFIAPEDT01PA6SI666TL6VSDTKGA6HFV6VEFDTYSNSEYNDPPTDHV6IDVNS											
A - 1cq9-CD AETVSFNFNSF-SEGNPAINF06DVTVLSNGNIOLTNLNKVNSV6RVLVANPVRINSSAT6NVASFLTSFSFENKDIK -DVDPADGIIFFIAPEDT01PAGSI666TLGVSDTKGAGHFVGVEFDTVSNSEVNDPPTDHVGIDVNS											
re o altivisie were contractive and the altivision of the second state of the s			T K								
	F S FIEIRIKID I K - D T D P A	DETTPFTAPEDIOTPAGSTGGGTLGVS	J K	>							
	Basic Controls Reg	sidue Interactions		0							
				A							
	Residue (C:)	Residue (D:)	chemical type	water mediated							
	ASN (9) - backhone	ASN (29) - sidechain	phobic	div							
	ASN (9) - backbone	GLV (158) - backhone	philicW	wet 7358							
	GLN (33) - sidechain	SER (28) - sidechain	dual	div							
	ASN (29) - backbone	LYS (74) - sidechain	dual	dry							
	ASN (29) - sidechain	LEU (27) - sidechain	phobic	dry							
	ASN (29) - sidechain	LEU (219) - sidechain	phobic	dry							
	ASN (29) - mixed	ILE (217) - sidechain	phobic	dry							
	SER (10) - sidechain	ASP (75) - backbone	philicW	wet 7483							
	SER (10) - mixed	LYS (74) - sidechain	phobic	dry							
	LYS (74) - sidechain	ASN (31) - mixed	philicW	wet 0 7331 7341							
	LYS (74) - sidechain	GLY (30) - backbone	philicW	wet <u>7331</u>							
	LYS (74) - sidechain	ASN (9) - backbone	dual	mixed 7331							
	LYS (74) - sidechain	SER (10) - mixed	phobic	dry							
	LYS (74) - sidechain	ARG (221) - mixed	philicW	wet <u>7331</u> <u>7341</u>							
	LYS (74) - sidechain	ASN (29) - backbone	philicHb	dry							
	LEU (219) - sidechain	ASN (29) - sidechain	phobic	dry							
	SER (28) - sidechain	LEU (27) - sidechain	phobic	dry							
	SER (28) - sidechain	GLN (33) - sidechain	dual	dry							
	SER (28) - backbone	ILE (217) - sidechain	phobic	dry							
nol script terminated				z							

• SCOWLP is a structural classification of protein binding regions at family level based on the structural classification of proteins, SCOP.

INTERFACE DEFINITIONS IN SCOWLP

- Structural Characterization of Water, Ligands, and Proteins

Interactions definition:

- ≻ H-bond: 3.2 Å
- Salt bridge: 4.0 Å
- > VDW: R_{1 VDW}+R_{2 VDW}

Water-mediated interactions are important

CASE STUDY I

- MD study of the role of water in protein-protein interfaces
- Introduction of solvent information for protein contacts

prediction

Goals:

 \succ To analyze dynamics and energetics of interfacial residues and

interfacial solvent

To analyze of water role in conservation of protein interfaces

To improve protein contacts prediction by taking into account

solvent data from the PDB

CHOOSING DATASET

Criteria:

- > Representativity:
 - Many members in the family
 - Families with different interfaces
- High resolution (X-Ray structures < 2.5 Å)</p>

MD STUDY DATASET

Immunoglobulin

H, L chains ~220aa

ΔASA= (1291 ± 471) Å²

3 protein-peptide complexes 3 protein-protein complexes

$$\delta ASA = \frac{1}{2} (ASA (molecule 1) + ASA (molecule 2) - ASA (complex))$$

MD SIMULATIONS

- **> AMBER 8.0**
- ≻ 10 ns
- Explicit solvent (TIP3P)
- ≻ PBC

RELATIVE TIME FRACTIONS (TFS) OF INTERACTIONS

RELATIVE TIME FRACTIONS (TFS) OF INTERACTIONS

In MD analysis each residue is described by TFs and does not

belong disambiguously to one of the interfacial classes

GEOMETRIC SIZES OF INTERFACES

$$\Delta ASA_{d} = \sum_{i} \Delta ASA_{i} (TF_{D,i} + \frac{1}{2} TF_{d,i})$$

$$\Delta ASA_{w} = \sum_{i} \Delta ASA_{i} (TF_{ws,i} + \frac{1}{2} TF_{d,i})$$

Relative increase of the interface sizes are:

 $\Delta ASA_w / \Delta ASA_d = 0.28 \pm 0.07$ for SH3

 $\Delta ASA_w / \Delta ASA_d = 0.39 \pm 0.13$ for Ig

GEOMETRIC SIZES OF INTERFACES

Inclusion of water-mediated interactions in the

interface definition essentially

increases interface size

INTERACTIONS PATTERNS OF IG AND SH3

INTERACTIONS PATTERNS OF IG AND SH3

Amount of water-mediated

interactions is comparable with

amount of direct interactions

PATTERN OF WET SPOTS INTERACTIONS

PATTERN OF WET SPOTS INTERACTIONS

Water-mediated interactions increase the probability of

hydrophobic residues to be an active part of

hydrophilic interfaces

CONSERVATION OF WATER-MEDIATED INTERACTIONS OF SH3 DOMAINS

---MARRVRALYDFEAVEDNELTFKHGELITVLDD-SDANWWQGEN--HRGTGLFPSNFVTTDL--GTGVTLFVALYDYEARTEDDLSFHKGEKFQILNS-SEGDWWEARSLTTGETGYIPSNYVAPVD-----NLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQT--KNGQGWVPSNYITPVNS PLGSVRWARALYDFEALEEDELGFRSGEVVEVLDS-SNPSWWTGRL--HNKLGLFPANYVAP------SAEYVRALFDFNGNDEEDLPFKKGDILRIRDK-PEEQWWNAED-SEGKRGMIPVPYVEKYH-----NLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQT--KNGQGWVPSNYITPVNS ----VRWARALYDFEALEEDELGFRSGEVVEVLDS-SNPSWWTGRL--HNKLGLFPANYVAPMM-----NLFVALYDFVASGDNTLSITKGEKLRVLGYNHNGEWCEAQT--KNGQGWVPSNYITPVNS ----TLFVALYDYEARTEDDLSFHKGEKFQILNSSE-GDWWEARSLTTGETGYIPSNYVAPV--- SGIRIIVVALYDYEAIHHEDLSFQKGDQMVVLEES--GEWWKARSLATRKEGYIPSNYVA--------TTFVALYDYESRTETDLSFKKGERLQIVNNTE-GDWWLAHSLSTGQTGYIPSNYVAPSD-X-wet spot/dual in SCOWLP but not in MD Y-wet spot in MD but not in SCOWLP Z-wet spot/dual in SCOWLP and wet spot in MD

CONSERVATION OF WATER-MEDIATED INTERACTIONS OF SH3 DOMAINS

Interaction conservations vs. sequence/structural conservation

INTERACTIONS CONSERVATION

SH3	Ligand
D16	I172
E18	R64
D20	Y66
T16	Y63

INTERACTIONS CONSERVATION

Water molecules as a part of interfaces contribute to the

conservation of protein-protein interactions

FLUCTUATIONS OF INTERFACIAL RESIDUES

 $F(TF_{t}, TF_{D}, TF_{d}, TF_{w}) \text{ is analytically unknown fluctuation function}$ $< F(TF_{k} > x) >_{i,j} = function(TF_{k}); i \neq k; x \in [0; 100]$

FLUCTUATIONS OF INTERFACIAL RESIDUES

FLUCTUATIONS OF INTERFACIAL RESIDUES

Wet spots are less mobile than protein surface residues

but more mobile than dry residues

MM-PBSA ANALYSIS OF INTERFACIAL RESIDUES

Wet spots, dual and dry interfacial residues are

energetically comparable

RESIDENCE TIME OF INTERFACTIAL WATER

RESIDENCE TIME OF INTERFACTIAL WATER

MAXIMUM RESIDENCE TIME

RESIDENCE TIME OF INTERFACTIAL WATER

Water molecules in wet spots have longer residence time

than the ones on protein surface

FREE ENERGY PERTURBATION DOUBLE DECOUPLING METHOD

 $A(sol) + B(sol) \longrightarrow AB(sol) \Delta G_{AB}^{\circ} = \Delta G_2^{\circ} - \Delta G_1^{\circ}$

A- protein B - solvent (water)

Double decoupling method

- 1. Simulation with disappearing charge
- 2. Simulation with disappearing VDW radius while charge is 0

FREE ENERGY PERTURBATION (1UJ0 EXAMPLE)

Site / E, <u>kcal/mol</u>	Water site type	Elect	VDW	-RT* In(S _a S _b /S _{a*b})	RT *In(C ₀ V ₁)	∆ G⁰₁₍₂₎	∆G⁰
E12-R64	Wet spot	12.9	-1.5	0.4	-4.4	7.4	-1.4
D34-N66	Wet spot	8.3	0.1	0.4	-4.1	4.7	1.3
D34-N66, 2 H ₂ O	Wet spot	22.9	-3.7	0.8	-8.2	12.6	-6.6
N52-M61	Wet spot	8.9	0.1	0.4	-4.2	5.2	0.8
N52-M61, 2 H ₂ O	Wet spot	18.1	0.1	0.8	-7.2	11.2	0.1
L58- R6	Surface	9.8	0.2	0.4	-3.8	6.4	-0.4
D31-S33	Surface	7.6	-0.6	0.4	-3.7	3.7	2.3
Control: lysozyme	Cavity	13.5	0.0	0.4	-3.9	10.0	-4.0
Bulk→vacuo		8.2	-2.2	-	-	6.0	-
Bulk → vacuo (McCammon, 2004)		8.2	-2.2	-	-	6.0	-
Bulk → vacuo		8.3	-2.4	-	-	5.9	-

FREE ENERGY PERTURBATION (1UJ0 EXAMPLE)

In terms of free energy, interfacial water molecules are

very diverse, but significantly affect the free energy of

complex formation

CORRELATED MUTATIONS CONCEPT

Interacting protein residues coevolve, so that a mutation in one of the interacting counterparts is compensated by a mutation in the other

SIMILARITY MATRIX STRUCTURE

X(i-j) = X(j-i)

OBTAINING WET MATRIX

DRY and WET similarity matrices are not completely independent

PREDICTIONS PIPELINE

PREDICTIONS PIPELINE

PREDICTIONS PIPELINE

III. Accuracy = $C_{corr}/C_{predicted}$

Random accuracy = $C_{observed}/C_{max}$

Improvement over random = Accuracy/Random accuracy

Wet prediction ratio
$$(\alpha) = \frac{Accuracy(\alpha)}{Accuracy(\alpha=0)}$$

$$X_{d} = \sum_{i=1}^{n} \frac{P_{ic} - P_{ia}}{d_{i}n}$$

 d_i -distance bin; n-number of bins P_{ic} -correlated pairs; P_{ia} -all pairs

INTRADOMAIN CONTACTS

50 PFAM families Alignment length: 30-195 Alignment size: 20-295 sequences

Up to 20% improvement!

Up to 30% improvement!

INTERDOMAIN CONTACTS

10 PFAM families domain pairs

EXAMPLE: SH3-SH2

EXAMPLE: SH3-SH2

CASE STUDY I: CONCLUSIONS

- All interfacial residue types are quantitatively comparable in terms of their contribution to the energy of complex formation.
- Interfacial water contributes to the conservation of proteinprotein interactions and has higher residence time than water at surfaces.
- The introduction of the WET similarity matrix into the concept of correlated mutations significantly improves protein contacts prediction.

CASE STUDY II: SOLVENT ROLE FOR GAG DOCKING

> Solvent role:

- Bridging water molecules
- Displaced water molecules

> Objectives:

- To place solvent into the binding site de novo
- To study how much solvent inclusion can improve docking

GAG DOCKING WITHOUT AND WITH EXPLICIT SOLVENT

Addition of explicit solvent can significantly improve docking results

PROBE-BASED MAPPING OF PROTEIN INTERACTIONS

GRID: determines energetically favourable positions for chemical probes in proteins

 $E(x_i, y_i, z_i) = E_{el}(x_i, y_i, z_i) + E_{vdw}(x_i, y_i, z_i) + E_{hb}(x_i, y_i, z_i)$

Probes:

- H₂O
- OH
- COO-
- C_{sp3,sp2,sp}
- -S=O
- others ...

I. BINDING SITE MINIMIZATION

II. PREDICTION OF SOLVENT POSITIONS

II. PREDICTION OF SOLVENT POSITIONS

II. PREDICTION OF SOLVENT POSITIONS

III. PREDICTION OF DISPLACED SOLVENT

III. PREDICTION OF DISPLACED SOLVENT

PROOF OF CONCEPT

T8U (1.95 Å): sulfotransferase+HS (tetra)

SUMMARY

- > We de novo predict explicit solvent positions in the binding site
- > Docking results are improved when explicit solvent is used
- Novel docking approaches are needed to take solvent into account

LECTURE 3: MODELLING SOLVENT

- Water unique properties
- Water and biomolecular systems
- Implicit solvent and Poisson-Boltzmann methodology
- Explicit solvent models
- Grid Inhomogeneous Solvation Theory (GIST)
- Solvent challenge in docking
- Water in protein-protein interfaces
- Case studies:
 - MD study of the role of water in protein-protein interfaces
 - Introduction of solvent information for protein contacts prediction
 - Inclusion of water in GAGs docking to proteins

