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LECTION 4: PROTEIN FOLDING

» Protein folding and denaturation
» Anfinsen's dogma
» Folding of a- and B-secondary structures

» Hydrophobic effect

» Levinthal's paradox

> Protein vs other polymers

» Thermodynamics and kinetics of protein folding
> Protein folding in the cell

» Computational approaches to study folding

» CASP

» Case study: folding of an interdomain linker



FOLDING AND DENATURATION

® Protein folding is the process by which a protein structure assumes its

native (functional) conformation.
® Protein denaturation is the process by which a protein loses its native

conformation.
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FOLDING: 1D=>3D

AA sequence Protein structure

>FASTER_FORMAT_SEQUENCE
MDFGSLETVVANSAFIAARGSFDASSGPASRDRKYLARLKLPPLSKCEALR
ESLDLGFEGMCLEQPIGKRLFQQFLRTHEQHGPALQLWKDIEDYDTADDAL
RPQKAQALRAAYLEPQAQLFCSFLDAETVARARAGAGDGLFQPLLRAVLAH
LGQAPFQEFLDSLYFLRFLQWKWLEAQPMGEDWFLDFRVLGRGGFGEVFAC
QMKATGKLYACKKLNKKRLKKRKGYQGAMVEKKILAKVHSRFIVSLAYAFE
TKTDLCLVMTIMNGGDIRYHIYNVDEDNPGFQEPRAIFYTAQIVSGLEHLH
QRNITIYRDLKPENVLLDDDGNVRISDLGLAVELKAGQTKTKGYAGTPGFMA
PELLLGEEYDFSVDYFALGVTLYEMIAARGPFRARGEKVENKELKQRVLEQ
AVTYPDKFSPASKDFCEALLQKDPEKRLGFRDGSCDGLRTHPLFRDISWRQ
LEAGMLTPPFVPDSRTVYAKNIQDVGAFSTVKGVAFEKADTEFFQEFASGT
CPIPWQEEMIETGVFGDLNVWRPDGHHHHHH

® In general — NOW — computationally unfeasible task



DENATURATION

y

» Caused by:
- temperature (high and low)
- pH

- ionic strength

- pressure AG=AH-TAS

> Reversibility:
- reversible
- irreversible
» Structural levels affected:
- Tertiary
- Secondary
- * S-S bridges

» Structural levels not affected:

- Covalent bonds

- Primary structure
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PROTEIN STATES

> Native:
- native function
- accurately defined contacts/residus packing (CD, fluorescence)
- fixed H-exchange rate (NMR)

> Molten globule:
[GdmCI]

A

- still compact but no unique packing
- hydrophobic core fluctuates

- secondary structure, S-S bonds

Coil

- increased mobility of side-chains
- partial solvent accessibility of Trp

- absence of some «remote» contacts
> Coil:

- function is lost _
- most of contacts are lost Natlve

- secondary structure partly affected

MOLTEN




TRANSITION: «<ALL OR NOTHING»
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ANFINSEN'S DOGMA

® Protein's native structure is determined by its aa sequence and it is:

- unique

- stable

- kinetically accessible

» Anfinsen's experiment (1957):

- Bovine ribonuclease A

- Denaturation

- Works for not covalently modified proteins
-AG ~1-10 kcal/mol

folding



LEVINTHAL'S PARADOX

» How much time needs protein to be folded?
- Every amino acid ~ 10 conformations
- 100-aa polypeptide ~ 10'° conformations

- Time of 1 conformational change ~ 10" s

- 10%° years needed, Universe life ~ 10
- In reality: folding time ~ minutes-days
> Is the native conformation the most stable???

» Kinetics or thermodynamics???



MANY SEQUENCES/FEW FOLDS
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SCOP (2008): 1393 folds



FRAMEWORK MODEL

Intermediate
Secondary Structure
Formation

Final 3-dimensional Native

Structure



a-HELIX ORGANIZATION
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» 1T => | helix content (helicity)

> Time, =~ Time
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> Rate =1 aa/ns



B-SHEET ORGANIZATION
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> B-sheet assembles much slower than a-helix (~ms-hours or weeks).



B-SHEET ORGANIZATION

6 % 63

iniat

» External B-layers have higher energies than internal.
> |l type of transition.

> High energetical barrier.



B-SHEET ORGANIZATION

gy +0 gy —energy of aresidue withinp —sheet +at the border
gs+0g,<0 — B—hairpinisstable
gz +0gs>0 — P—hairpinisunstable

NWZZI’I

—  Minimum number of residues required

» No equilibrium with unfolded structure. TBA
> Initiation is a limiting stage.

»> Stable hairpins form as fast as a-helices.
> V~N3/2

> <n(a)>=11; <n(B)>=6




SECONDARY STRUCTURE PROPENSITIES

The Ramachandran Plot.

Left
handed
alpha-helix.

180

+psi

|

-psi Right handed
alpha-helix.

1 an' N
-180 - phi 0 + phi 180

» a-forming: Met, Ala, Leu, Glu, GIn, Lys.
» B-forming: Thr, lle, Val, Phe, Tyr, Trp.
» Disorder-supporting: Gly, Ser, Pro, Asp, Asn.

> Indifferent to secondary structure: His, Arg, Cys.



FOLDING DRIVING FORCES

AG=AH-TAS
Protein
> Enthalpy
» Entropy s
Solvent
V(7)= T Ko+ 3 K00,/ 3 2V_"<1+cos[n¢_y]>+“§s (A__f;_HZZTjI
» Electrostatic potential:
- H-bonds
- Salt bridges

» Lennard-Jones potential

- vdW contacts



HYDROPHOBIC EFFECT

» [CH,] above water surface = 10 [CH,] in water g o
¢ .
> 90% of work spent on protein folding e‘, e ?
» Hydrophobic molecules: ® .."I:j' ?
- disturb H-bonds P20 9
- do no create H-bonds themselves ¢

Polypeptide Chain
& Hydrophilic Residues

:> Entropic @ Hydrophobic Residues
nature
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HYDROPHOBIC EFFECT

» Hydrophobicity = function (T)
- T1 up to 420K, H®1, melting surfacial H-bonds
- T1 (>420K), HOD |

> AG=kKAASA; k~102kcal/(mol-A)
AG(100 aa)~kcal/mol

283 420 T.K

> Index of hydrophobicity for amino acids:

equilibrium constant between water 2

and nonpolar solvent 1—
) B ChkdH [arbitrary units)
O Frisenmel [keal £ o)

Hydrophabicity
—_ [ ]

T T T T T T T T T T T T T T T T T T 71
FY |l LMYWCTAPSRHGKGMWMDE

Arnirn acid



POLYMER vs GAS

Gas: | © ® Polymer:

V,Nw| © V,N, w

_(V=Nw)_ V.. . _ wlp B B
Vaccess_ N _<N>(1 p)_ (l_p) Vaccess_A<1 p)

§S=kIn(V ... )=kIn((w/p)(1—p)) §S=kIn(V__ )=kIn(A(1—p))

access

Could be two AG_. => two phases Only one AG_. => gradual transition

» Why protein does not fold like a normal polymer?



PHYSICS OF «<ALL OR NOTHING»

> Protein is not a standard polymer: high heterogeneity.

> Rigid backbone and more flexible side-chains.

>V, occupy 70-80% of V Roughly equal distribution of free V.

protein”

» Rotamers associated entropy jump occurs in unfolding + action of solvent
(minimal frustration concept).

» Density remains high.

backbone




THERMODYNAMICS

H A \
: j
G=H-TS\ #
D
W

0.7 ‘ 1.0
Globule density



POLYMER vs PROTEIN: SPECTRUM

Regular homopolymer Protein
E E

0 0

< > E < >

AE<KT AE>>KT

> Protein has anomal stable energetic state (native).
» AE~10 kcal/mol => p=exp(-AE/kT)~10
> If there are > 1 stable structure p=exp(-2AE/kT)~10-1¢

- polyLys, prions, B-amyloids, serpins



THERMODYNAMICS vs KINETICS

> Protein folding is not only determined by a
native state thermodynamical properties but
also by a kinetic path:

- fast

- selected during evolution

- leads to native state

> Energy landscapes have hierarchical

organization
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FUNNELS

® The folding funnel hypothesis is a the energy
landscape theory of protein folding assuming

that a protein's native state corresponds to its

free energy minimum.

» One path or several:

- thermodynamic view
- statistical physics view



TRANSITIONAL STATE

> For small proteins (one-domain proteins) folding process includes only
one energetical barrier.

AG *
o
AGT

____________________________ } O _<G#_ GB)

— RT

A AG kpa=koe
reaction
B ¢ __ 1 G’
A—->B ™~ ~€
> kA - B

Reaction coordinate




ESTIMATION OF G* BARRIER

» During folding:

- AH = An + Bn?3, decreases

- AS = Cn + Dn?3, decreases

- AG = AH-TAS => equilibrium F—U if there were no surfacial effects!
> G# ~ n2/3

» Folding time ~ exp [(1 £0.5)N??] 10ns, defined by amount of native contacts.

}M
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A A
AG } g AG U

Growth of the globule Growth of the globule



CHEVRON FIGURES
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MUTAGENESIS IN FOLDING STUDIES

» Mutation affects:

- folding rate

] - ] kaUT< kaT
stability of the native state \\ MG, >0

lllllll ‘ kUMUT> kUWT

AAG; >0

> Nucleation mechanism

>
_ d(G'~Gy) S
Y8(G-Gy) :
F u LI JMUT > fWT
> ® = 1, residue is in folding AAG, . ,<0
. - k MUT 55  WT MUT
nucleus; ®. = 0, not. DG, ., >>0 F .....

> Most of mutations in nucleus
AG, . >0

f—u

affect stability of the native

structure.

Reaction Coordinate



FOLDING IN THE CELL

» Ribosome synthesis ~ 1 minute.

> Synthesis speed is not constant. i

» For multidomain proteins N-terminal

domains are folded before the synthesis is
completed. /
» Domain is a unit of folding (in vitro; globin).

» Cotranslational folding (luciferase).

» Self-organization experiments: chemical

synthesis and cyclic proteins.

—) _—

C C'



Confarmatianal energy

ENERGETICS OF
COTRANSLATIONAL FOLDING

Biosynthesis
without folding

Co-translational folding —

Heaction coordinate



CHAPERONS

Hsp100 etc. Regulated by T, pH etc. 0=
> Use ATP hydrolysis

> Decrease the hydrophobic AASA . /(/ﬁm
“ \—I‘JH 0

» Hsp(Heat Shock Proteins): Hsp60, Hsp70, oH
'|’
0

> Ribosomes selves

> Prolyl- and disulfide-isomerase A /r_-. Hy



COMPUTATIONAL APPROACHES

> MD

- replica exchange

- Principal Component Analysis (PCA)
- Clustering by contacts/RMSD/radius of gyration/H-bonds /,E,E,E,{-‘,g ?

» Monte Carlo

> «Zip and assemble» approach

> Up to 100 aa proteins could be tractable:
- 36-residue villin, RMSD = 4.5 A (Duan, Kollman, 1998)
- 20-residue Trp-cage peptide, RMSD =1 A (Simmerling, 2002)
- 47-residue albumin-binding domain, RMSD = 2 A (Lei, 2007)

- B-hairpins up to 20-residues



CASP COMPETITION

» Critical Assessment of Techniques for Protein Structure Prediction

> predictioncenter.com

»_Goal: to obtain an in-depth and objective assessment of current abilities

in the area of protein structure prediction caSP Edberiments

CASP ROLL
CASP10 (2012}

» CASP questions: CASPY (2010}
CASPE (2008)

- Models similarity to the corresponding experimental structures cssr7 (zooe)

CASPE (2004
- Mapping of the target sequence onto the proposed structure CASPS (2002)

CASP4 (20007
- Model usefulness for similar structures CASPS (1096)
CASPZ (1996)
CASP1 (1994

» Prediction of 'soon known structures’, no postpredictions

- Model accuracy vs best template use

- Has there been progress from the earlier CASPs?
- What methods are most effective?

- Where can future effort be most productively focused?




SCOPE OF CASP

> Tertiary structure prediction:

- The 'Template based modelling’

- The 'Template free modelling’

- Detailed analysis of the side chains, loops, and active sites for those
structure models where the backbone is sufficiently accurate.

- Success in refining models beyond the quality obtained by simply

copying from a single template will be analyzed. CASPS target 12.D1

all models X 3 ’
(3dsm) % B J/\ AN R o

» Other prediction cathegories:
- Detecting residue-residue contacts in proteins.
- Identifying disordered regions in target proteins.
- Function prediction (prediction of binding sites).
- Quality assessment of models in general and the reliability of predicting

certain residues in particular.



CASP EXAMPLE
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FOLDIT

fold ..

| Solve *Puzzles PUZZLES = CATEGORIES GROUPS PLAYERS RECIPES CONTESTS
. for Science BLOG & FEEDBACK FORUM WIKI FAQ ABOUT CREDITS

GET STARTED: DOWNLOAD

I
oy

Win Beta Mac Beta Linux Beta

: - Windows 05X Lirvuex
C“c"_“ to learn h_Dw Lk [XP/Vista/7'8) (10.7 or later) [ 64-hit)
contribute to science b'y'

playing Foldit.
_ Are you new to Foldit? Click here.

Are you an educator? Click here.

SEARCH
| Google Search | & only search fold.it
NHNU EH"FTEF Try our new scie RECOMMEND FOLDIT
ive and build e [ ] -
What's New ;N
USER LOGIN

Username: *
New Release! [ ]

Password: *
Hey everyone, [ ]
We're releasing a small update to the main game in preparation for some upcoming | Legin |

drug design puzzles. You shouldn't notice any impact on gameplay.
® Create new account

Thanks! ® Request new password

(Thu, 10/29/2015 - 20:04 | 0 comments)

http://fold.it/



FOLDING@HOME
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CASE STUDY: FOLDING AN
INTERDOMAIN LINKER

Linker

» No structure of KDR motif in the linker is available

Aim: to calculate the conformation of the linker



CASE STUDY: FOLDING AN
INTERDOMAIN LINKER

» Metrhodology: REMD

> Peptides: KDR, KKDRA, PKKDRAR, RPKKDRARQ



CASE STUDY: FOLDING
INTERDOMAIN LINKER
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CASE STUDY: FOLDING AN

INTERDOMAIN LINKER
KKDRA




CASE STUDY: FOLDING AN

INTERDOMAIN LINKER
PKKDRAR
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CASE STUDY: FOLDING AN

INTERDOMAIN LINKER
RPKKDRARQ

o - N w ~ o




CASE STUDY: FOLDING AN
INTERDOMAIN LINKER

The studied interdomain linker folds into a-helix



LECTION 4: PROTEIN FOLDING

> Protein folding and denaturation: «all or nothing»
» Anfinsen's dogma
» Folding of a- and B-secondary structures

» Hydrophobic effect

» Levinthal's paradox

> Protein vs other polymers

» Thermodynamics and kinetics of protein folding
> Protein folding in the cell

» Computational approaches to study folding

» CASP

» Case study: folding of an interdomain linker
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