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LECTION 4: PROTEIN FOLDING

➢ Protein folding and denaturation

➢ Anfinsen's dogma

➢ Folding of α- and β-secondary structures

➢ Hydrophobic effect

➢ Levinthal's paradox

➢ Protein vs other polymers

➢ Thermodynamics and kinetics of protein folding

➢ Protein folding in the cell 

➢ Computational approaches to study folding

➢ CASP

➢ Case study: folding of an interdomain linker



  

FOLDING AND DENATURATION

● Protein folding is the process by which a protein structure assumes its 

native (functional) conformation.

● Protein denaturation is the process by which a protein loses its native 

conformation.
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FOLDING: 1D=>3D

AA sequence

>FASTER_FORMAT_SEQUENCE
MDFGSLETVVANSAFIAARGSFDASSGPASRDRKYLARLKLPPLSKCEALR
ESLDLGFEGMCLEQPIGKRLFQQFLRTHEQHGPALQLWKDIEDYDTADDAL
RPQKAQALRAAYLEPQAQLFCSFLDAETVARARAGAGDGLFQPLLRAVLAH
LGQAPFQEFLDSLYFLRFLQWKWLEAQPMGEDWFLDFRVLGRGGFGEVFAC
QMKATGKLYACKKLNKKRLKKRKGYQGAMVEKKILAKVHSRFIVSLAYAFE
TKTDLCLVMTIMNGGDIRYHIYNVDEDNPGFQEPRAIFYTAQIVSGLEHLH
QRNIIYRDLKPENVLLDDDGNVRISDLGLAVELKAGQTKTKGYAGTPGFMA
PELLLGEEYDFSVDYFALGVTLYEMIAARGPFRARGEKVENKELKQRVLEQ
AVTYPDKFSPASKDFCEALLQKDPEKRLGFRDGSCDGLRTHPLFRDISWRQ
LEAGMLTPPFVPDSRTVYAKNIQDVGAFSTVKGVAFEKADTEFFQEFASGT
CPIPWQEEMIETGVFGDLNVWRPDGHHHHHH

Protein structure

● In general — NOW — computationally unfeasible task



  

DENATURATION
➢ Caused by:

- temperature (high and low)

- pH

- ionic strength

- pressure

➢ Reversibility:

- reversible 

- irreversible

➢ Structural levels affected:

- Tertiary

- Secondary 

- * S-S bridges

➢ Structural levels not affected:

- Covalent bonds

- Primary structure

ΔG=ΔH-TΔS



  

PROTEIN STATES
➢ Native:

- native function

- accurately defined contacts/residus packing (CD, fluorescence)

- fixed H-exchange rate (NMR)

➢ Molten globule:

- still compact but no unique packing

- hydrophobic core fluctuates

- secondary structure, S-S bonds

- increased mobility of side-chains

- partial solvent accessibility of Trp

- absence of some «remote» contacts

➢ Coil:

- function is lost

- most of contacts are lost

- secondary structure partly affected

T

[GdmCl]

Coil

Native

MOLTEN



  

TRANSITION: «ALL OR NOTHING»

➢ Protein changes from not native to 

native state by dramatic change of 

properties: heat capacity, single 

molecule energy distribution etc. 
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ANFINSEN'S DOGMA

●  Protein's native structure is determined by its aa sequence and it is:

- unique

- stable 

- kinetically accessible 

➢ Anfinsen's experiment (1957):

- Bovine ribonuclease A

- Denaturation

- Works for not covalently modified proteins

- ΔG
folding

~1-10 kcal/mol



  

LEVINTHAL'S PARADOX

➢ How much time needs protein to be folded?

- Every amino acid ~ 10 conformations

- 100-aa polypeptide ~ 10100 conformations

- Time of 1 conformational change ~ 10-13 s

- 1080 years needed, Universe life ~ 1010

-  In reality: folding time ~ minutes-days

➢ Is the native conformation the most stable???

➢ Kinetics or thermodynamics???



  

MANY SEQUENCES/FEW FOLDS

SCOP (2008): 1393 folds



  

FRAMEWORK MODEL



  

G=G−Gcoil=n−2 f HB−nTS

ginit=−2gHB gelong=gHB−TS

G=g initn gelong

K=e
−G

kT =e

−g init
kT



e

−g elong

kT


n= S n

≪1

➢ 1D transition, both phases are stable and coexist

➢  n
0 
= f(aa) ≈ 30; g

init
≈ 4 kcal/mol; σ ≈ 0.001; g

HB
≈ TS

α 
≈ -2 kcal/mol

➢ ↑T => ↓ helix content (helicity)

➢ Time
initiation 

≈ Time
full elongation

➢ 
Rate ≈ 1 aa/ns

n0

α-HELIX ORGANIZATION



  

β-SHEET ORGANIZATION

1D 2D
➢ β-sheet assembles much slower than α-helix (~ms-hours or weeks). 



  

β-SHEET ORGANIZATION

Unstable
➢ External β-layers have higher energies than internal.

➢ II type of transition.

➢ High energetical barrier.



  

β-SHEET ORGANIZATION
g g−energy of a residue within−sheetat the border

g g0   −  −hairpin is stable

g

N min=
g  g

−g

  −  Minimumnumber of residues required

➢ No equilibrium with unfolded structure.

➢ Initiation is a limiting stage.

➢ Stable hairpins form as fast as α-helices.

➢ V~N3/2

➢ <n(α)>=11; <n(β)>=6

=C e
A

−g

g g0   −  −hairpin is unstable





  

SECONDARY STRUCTURE PROPENSITIES

➢ α-forming: Met, Ala, Leu, Glu, Gln, Lys.

➢ β-forming: Thr, Ile, Val, Phe, Tyr, Trp.

➢ Disorder-supporting: Gly, Ser, Pro, Asp, Asn.

➢ Indifferent to secondary structure: His, Arg, Cys.



  

FOLDING DRIVING FORCES

ΔG=ΔH-TΔS

V r = ∑
bonds

K r r−req
2
 ∑

angles

K −eq
2
 ∑

dihedrals

V n

2
1cos [n−]∑

i j

atoms


A ij

R ij
12

−
B ij

R ij
6
∑

i j

atoms qi q j

 R ij

➢ Electrostatic potential:

- H-bonds

- Salt bridges

➢ Lennard-Jones potential

- vdW contacts

➢ Enthalpy

➢ Entropy

Protein 

+

Solvent



  

HYDROPHOBIC EFFECT
➢ [CH

4
] above water surface = 10 [CH

4
] in water

➢ 90% of work spent on protein folding

➢ Hydrophobic molecules:

- disturb H-bonds

- do no create H-bonds themselves

Entropic 
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HYDROPHOBIC EFFECT

➢ Hydrophobicity = function (T)

- T↑ up to 420K, HФ↑, melting surfacial H-bonds

- T↑ (>420K), HФ↓

➢ ∆G=k∆ASA; k~10-2 kcal/(mol·Å)

∆G(100 aa)~kcal/mol 

➢ Index of hydrophobicity for amino acids:

 equilibrium constant between water 

 and nonpolar solvent

T, K283 420

E

0

T∆S

∆H

∆G



  

POLYMER vs GAS

➢ Why protein does not fold like a normal polymer?

Gas: 

V, N, ω

Polymer:

V, N, ω

=
N

V

V access=
V−N 

N
=

V
N

1−=
/

1−
V access=A1−

 S=k ln V access=k ln /1−  S=k ln V access=k ln A1−

Could be two ΔG
min

 => two phases Only one ΔG
min

 => gradual transition



  

PHYSICS OF «ALL OR NOTHING»
➢ Protein is not a standard polymer: high heterogeneity.

➢ Rigid backbone and more flexible side-chains.

➢ V
vdW 

occupy 70-80% of V
protein

. Roughly equal distribution of free V.

➢ Rotamers associated entropy jump occurs in unfolding + action of solvent 

(minimal frustration concept).

➢ Density remains high.

χ

backbone



  

THERMODYNAMICS

H

S

G=H-TS

Globule density
0.7 1.0

#

N
D



  

POLYMER vs PROTEIN: SPECTRUM

Regular homopolymer Protein

E E
ΔE>>kT

E
0

E
0

ΔE<kT

➢ Protein has anomal stable energetic state (native).

➢ ΔE~10 kcal/mol => p=exp(-ΔE/kT)~10-8

➢  If there are > 1 stable structure  p=exp(-2ΔE/kT)~10-16

- polyLys, prions, β-amyloids, serpins



  

THERMODYNAMICS vs KINETICS
➢ Protein folding is not only determined by a 

native state thermodynamical properties but 

also by a kinetic path:

- fast 

- selected during evolution

- leads to native state

➢ Energy landscapes have hierarchical 

organization



  

FUNNELS

● The folding funnel hypothesis is a  the energy 

landscape theory of protein folding assuming 

that a protein's native state corresponds to its 

free energy minimum.

➢ One path or several:

- thermodynamic view

- statistical physics view



  

TRANSITIONAL STATE

➢ For small proteins (one-domain proteins) folding process includes only 

one energetical barrier.

Reaction coordinate

ΔG

k AB=k 0 e
−G #−GA

RT

k BA=k 0e
−G #−GB

RT

t AB=
1

k AB

~ eG
#



  

ESTIMATION OF G# BARRIER

➢ During folding: 

- ∆H = An + Bn2/3, decreases

- ∆S = Cn + Dn2/3, decreases

- ∆G = ∆H-T∆S => equilibrium F↔U if there were no surfacial effects!

➢ G# ~ n2/3

➢ Folding time ~ exp [(1 ±0.5)N2/3] 10ns, defined by amount of native contacts.

ΔG

Growth of the globule

ΔG

Growth of the globule

U

U

N N

M

M



  

CHEVRON FIGURES

K B : A=
nB



nA
=

k AB

k B A

dnA
dt

=−k ABnAk B AnB

nAnB=n0

nAt =nA0−nA

e−k ABkB AnA



k obs=k ABk B A



  

MUTAGENESIS IN FOLDING STUDIES

➢ Mutation affects:

- folding rate

- stability of the native state

➢ Nucleation mechanism

➢ Ф
f 

≈ 1, residue is in folding 

nucleus; Ф
f 
≈ 0, not.

➢ Most of mutations in nucleus 

affect stability of the native 

structure.

ϕ f=
δ(G‡

−GU )

δ(G F−GU )



  

FOLDING IN THE CELL

➢ Ribosome synthesis ~ 1 minute.

➢ Synthesis speed is not constant. 

➢ For multidomain proteins N-terminal 

domains are folded before the synthesis is 

completed.

➢ Domain is a unit of folding (in vitro; globin).

➢ Cotranslational folding (luciferase). 

➢ Self-organization experiments: chemical 

synthesis and cyclic proteins.

N

C

N'

C'



  

ENERGETICS OF 

COTRANSLATIONAL FOLDING



  

CHAPERONS

➢ Hsp(Heat Shock Proteins): Hsp60, Hsp70, 

Hsp100 etc. Regulated by T, pH etc.

➢ Use ATP hydrolysis

➢ Decrease the hydrophobic ΔASA

➢ Ribosomes selves 

➢ Prolyl- and disulfide-isomerase



  

COMPUTATIONAL APPROACHES

➢ MD

- replica exchange

- Principal Component Analysis (PCA)

- Clustering by contacts/RMSD/radius of gyration/H-bonds

➢ Monte Carlo

➢ «Zip and assemble» approach

➢ Up to 100 aa proteins could be tractable:

- 36-residue villin, RMSD = 4.5 Å (Duan, Kollman, 1998)

- 20-residue Trp-cage peptide, RMSD = 1 Å (Simmerling, 2002)

- 47-residue albumin-binding domain, RMSD = 2 Å (Lei, 2007)

- β-hairpins up to 20-residues



  

CASP COMPETITION
➢ Critical Assessment of Techniques for Protein Structure Prediction

➢ predictioncenter.com

➢ Goal: to obtain an in-depth and objective assessment of current abilities 

in the area of protein structure prediction

➢ Prediction of 'soon known structures', no postpredictions

➢ CASP questions:

- Models similarity to the corresponding experimental structures

- Mapping of the target sequence onto the proposed structure

- Model usefulness for similar structures

- Model accuracy vs best template use

- Has there been progress from the earlier CASPs?

- What methods are most effective?

- Where can future effort be most productively focused?



  

SCOPE OF CASP
➢ Tertiary structure prediction:

- The 'Template based modelling' 

- The 'Template free modelling' 

- Detailed analysis of the side chains, loops, and active sites for those 

structure models where the backbone is sufficiently accurate.

- Success in refining models beyond the quality obtained by simply 

copying from a single template will be analyzed.

➢ Other prediction cathegories: 

- Detecting residue-residue contacts in proteins.

- Identifying disordered regions in target proteins. 

- Function prediction (prediction of binding sites). 

- Quality assessment of models in general and the reliability of predicting 

certain residues in particular.



  

CASP EXAMPLE



  

FOLDIT

http://fold.it/



  

FOLDING@HOME



  

FOLDING@HOME



  

CASE STUDY: FOLDING AN 

INTERDOMAIN LINKER

Domain 1 Domain 2

Linker

Aim: to calculate the conformation of the linker

➢ No structure of KDR motif in the linker is available



  

CASE STUDY: FOLDING AN 

INTERDOMAIN LINKER

➢ Metrhodology: REMD

➢ Peptides: KDR, KKDRA, PKKDRAR, RPKKDRARQ 



  

CASE STUDY: FOLDING 

INTERDOMAIN LINKER



  

CASE STUDY: FOLDING AN 

INTERDOMAIN LINKER



  

CASE STUDY: FOLDING AN 

INTERDOMAIN LINKER



  

CASE STUDY: FOLDING AN 

INTERDOMAIN LINKER



  

CASE STUDY: FOLDING AN 

INTERDOMAIN LINKER

The studied interdomain linker folds into α-helix
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➢ Folding of α- and β-secondary structures
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➢ Levinthal's paradox

➢ Protein vs other polymers

➢ Thermodynamics and kinetics of protein folding
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➢ Case study: folding of an interdomain linker
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