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LECTURE 6: QM BASICS 
FOR COMPUTATIONAL CHEMISTRY

➢ Milestones of quantum mechanics

➢ Schrödinger equation

➢ Methods in quantum chemistry: HF, DFT, SCF

➢ Geometry optimization, transitional state

➢ Spectroscopy, NMR 

➢ QM/MM and ONIOM

➢ Solvent

➢ Quantum chemistry software

➢ Case study 1: fluorinated amino acids

➢ Case study 2: sugar's ring conformations



  

MILESTONES OF QM
● Quantum mechanics describe quantum systems and the laws of their 

motions (not accessible by classical mechanics)

➢ Planck: Spectrum=f(T) => quantum oscillators

➢ Einstein: photo-effect, light consists of quanta (photons)

➢ Bohr: electrons in atoms are in discrete states 

➢ de Broglie: wave nature of light hypothesis

➢ Davisson/Jermer: electrons diffraction (de Broglie waves)

➢ Schrödinger: wave mechanics

➢ Heisenberg: uncertainty principle 

➢ Compton: effect of the light's scattering 
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SCHRÖDINGER EQUATION

H =E ;       x  x =Probability  x 

∫∫∫ψ iψ j dx dy dz=ij−  Orthonormality

∫∫∫ψ j H ψ i dx dy dz= i H  j=E iij

● Born-Oppenheimer approximation decouples the Hamiltonian into 

“slow” nucleus movement and electronic term, because the nuclei move 

much slower than electron.

● Quantum chemistry: application of QM to study chemical behaviour.

● Quantum chemistry is a set of approximations!



  

● Atomic orbitals: is a mathematical function that describes the wave-like 

behavior of either one electron or a pair of electrons in an atom - Ψ(x)

ATOMIC ORBITALS

● Spin: is a quantum number that parameterizes the intrinsic angular 

momentum of a given particle (each AO has 2 electrons)

Energetic order: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p



  

MOLECULAR ORBITALS

● Molecular orbitals: a linear combination of atomic 

orbitals (LCAO)

- Occupied/Virtual 

- LUMO - lowest unoccupied MO

- HOMO – highest occupied MO

- Bonding/Antibonding/Non-bonding

-  and -symmetry
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BASIS SET

=∑
i=1

N

a iφi

● A basis set in quantum chemistry is a set of functions to describe the 

molecular orbitals, which are expanded as a linear combination of such 

functions with the weights or coefficients to be determined.

Depending on the basis set the methods are classified into:

- Hartree-Fock methods

- Density functional theory 

- Semiempirical methods

- Different approaches for electronic correlation



  

HARTREE-FOCK METHOD

➢ Hamiltonian can be decomposed into one-electron Hamiltonians:

➢ Solution is a Slater determinant: 

H=∑
i=1

N

hi

hi=−
1
2
▽i

2
−∑

k=1

M Z k

r ik

  −  one−electronic Hamiltonian

 i   −  Spin−orbital



  

HARTREE-FOCK METHODS CLASSIFICATION

➢ Number of electrons taken into account

➢ Number of Slater determinants

➢ Number of electronic states

➢ If {a
i
} are known 

=∑
i=1

N

a iφi

 r =x−x0
l  y− y0

m z−z0
ne−∣r−r 0∣  −   Slater type orbital STO 

➢ Very difficult to calculate integrals (1, 2, 4-electron) with STO



  

HF METHODS: GAUSSIAN APPROXIMATION

➢ Gaussian function:

- Integrals are much simplier

- More functions than STO

- More functions to represent single points

- Use of contracted functions

- Fall off more rapidly at long range

 r =x−x0
l
 y− y0
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ne−∣r−r 0∣
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STANDARD BASIS SETS (POPLE BASIS SETS)

➢ Minimal: each atom, just enough Gaussian functions:

- H:  1s

- C:  1s, 2s, 2px, 2py, 2pz

- Cl: 1s, 2s, 2px, 2py, 2pz, 3s, 3px, 3py, 3pz

➢ STO-3G: 3 Gaussian primitives per function

➢ Split valence (double-zeta)

- Two sizes of contracted function for each atomic orbital

- H: 1s, 1s'

- C:  1s, 1s', 2s, 2s', 2px, 2px', 2py, 2py', 2pz, 2pz'

➢ 6-31G - example 

- 6 primitive Gaussian in one contracted core function

- 2 contracted functions in the valence region: of 3 and 1 primitive Gaussians



  

STANDARD BASIS SETS: POLARIZATION

➢ Higher angular momentum:

- p on H

- d on C

- f on Fe

➢ Allow orbitals to change shape

➢ Examples:

- 6-31G (d) = 6-31G*

- 6-31G (d,p) = 6-31G**

- 6-31G (3d, 2p) more flexible angular shape

● Shift of the symmetry of an AO in relation to nucleus (f.i. bond)

Atom1

Bond

Atom1

Atom2



  

STANDARD BASIS SETS: DIFFUSE FUNCTIONS

➢ Improve tail of orbitals:

- 6-31+G: diffuse functions are added on heavy atoms 

- 6-31++G: diffuse functions are added on heavy atoms and hydrogens 

➢ Triple-split valence:

 - 6-311G

 - More flexible shape

➢ Other examples:

- 6-311++G (3df, 3pd)

…

➢ Correlation consistent methods:  cc-pVDZ, cc-pVTZ, aug-cc-pVDZ etc.

● Represent shallow AO for better approximation of AO 'tails', are 

important for bigger molecular systems  



  

RESTRICTED/UNRESTRICTED; OPEN/CLOSED 

SHELL HF METHODS

➢ Restricted/unrestricted

-- and -spins have the same energy or different

➢ Open/Closed Shell:

- all orbitals are doubly occupied or not

RHF UHF

Closed Shell Open Shell



  

HF WORKFLOW

Setup

Evaluate 1e-int

hi=−
1
2
▽i

2
−∑

k=1

M Z k

r ik

  −  one−electronic Hamiltonian

Initial density guess

Evaluate 2e-int Form Hamiltionian

Diagonalize Hamiltionian

Density converged? 

Properties 



  

ELETRONIC CORRELATION METHODS

● Electronic correlation: instant interaction between electrons (no in HF!)

➢ Configuration interaction: variational problem for the solution without 

correlation

➢ Møller-Plesset perturbation theory (MP2, MP3, MP4 …):

H = F + (H-F); (H-F)- perturbation

➢ Multiсonfigurational self-consistent field

hi=−
1
2
▽i

2
−∑

k=1

M Z k

r ik

V i { j }   −  one−electronic Hamiltonian withcorrelation



  

SEMIEMPIRICAL METHODS

➢ HF formalism

➢ Use of empirical parameters (already calculated integrals)

➢ Applied for big systems or as a starting approximation

➢ Faster than HF

➢ Example: Complete Neglect of Differential Overlap (CNDO):

- Only the electrons at the atomic open shells are taken into account. 

- The electrons at the closed shells are localized on the point nuclei. 

- Basis set corresponds to the occupied states of the atomic orbitals. 

- All integrals containing  i*and j are considered to be zero if i≠j. 

➢ Widely used methods: Extended Hückel method, MINDO, MNDO, AM1, PM3, 

CNDO/2, INDO, NDDO, RM1, SAM1, SINDO, ZINDO



  

DENSITY FUNCTIONAL THEORY

● The properties of a many-electron system can be determined by using 

functionals, which in this case is the spatially dependent on electron 

density and not wave functions. DFT uses variational principle.

H =[TVU ] ;    T- kinetic ;   V- potential ;   U- electron-electron interaction

= ;     - charge density

V []=∫V r  r d 3 r ;   E []=T []U []∫V r r d 3 r

V []s=V r ∫
e2r ' 
∣r−r '∣

d 3r 'V xc r  ;V []s−  effective single particle potential   

V []xc - exchange-correlation potential

➢ V
xc

 determines the method (2 components)

➢ Widely used methods: PBE, BLYP, B3LYP, PW91, M06HF ...



  

QM METHODS HIERARCHY

Schrödinger equation

MP2, MP4 
perturbation theory

Configuration 
interaction

DFT

HF

Semiempirical 
methods

Scaling ≥N5 Scaling ≥N5

Scaling ≥N4

Scaling = N4

Scaling = N3



  

BASIS SET SUPERPOSITION ERROR (BSSE)

Molecule A, basis A Molecule B, basis B Complex AB: basis AB

➢ Basis AB > Basis A + Basis B

➢ ∆∆G
AB

=∆G
AB∩AB

-∆G
A∩A

-∆G
B∩B 

> ∆∆G
AB exp

➢ 
Counterpoise correction:

∆∆G
AB

=∆G
AB∩AB

-∆G
A∩AB

-∆G
B∩AB

 

∆∆G
AB

=∆G
AB∩AB

-∆G
A∩A

-∆G
B∩B

+(∆G
A∩A

-∆G
A∩AB

)+(∆G
B∩B

-∆G
B∩AB

)

➢ More calculations than just A, B, AB



  

SINGLE POINT CALCULATIONS

Coordinates

SCF procedure

E, properties

● SP calculations: calculations of the energy and other properties for the 

given configuration of atomic nuclei



  

GEOMETRY OPTIMIZATION

Nuclei Coordinates
i

SCF procedure

(E, properties, ∆E, RMSD, ▽E)
i

E, properties

Convergence No convergence

 Typical calculation: Geom. Opt. (Basis1) / SP (Basis 2); Basis 2 > Basis 1



  

TRANSITIONAL STATE AND REACTION PATH

➢ Search not for a state with the minimal energy

➢ Input: 

- Reactants

- Products

- * Transitional state guess

- Reaction path step size

➢ Output: G (reaction coordinate) 



  

QM AND SPECTOSCOPY

➢ Vibrational frequencies:

- Harmonic vibrational frequencies (from Hessian)

- IR, Raman, NMR spectroscopy

- Anharmonic frequencies

➢ Thermochemistry:

- Partition functions

- Heat capacities

- Absolute entropies

- Energy (by finite temperatures)

- Enthalphy

- Gibbs free energy

Frequencies, Hz



  

VIBRATIONAL ANALYSIS



  

QM/MM, ONIOM, AB INITIO MD

➢ QM/MM

➢ ONIOM: “an onion-like method”
- Linking atoms between layers

- “REAL” - whole system

- “MODEL” - High level modelled system

- ΔE(HIGH,REAL)≈ΔE(ONIOM)

- 2 layers example:

- Only relative energies have meaning

- Different steps for integrations for layers

➢ Car-Parinello MD (CPMD), ~ 10 ps  

First layer:
Bond formation/breaking; 
High level method

Second layer:
Electronic effect on the 1st 
layer; Medium level method

Third layer:
Environmental effects on the 1st 
layer; Low level method

EONIOM=ELOW ,MODELE LOW ,REAL−ELOW ,MODEL EHIGH ,MODEL−E LOW ,MODEL 

EONIOM=ELOW ,REALEHIGH , MODEL−E LOW , MODEL

Size Level



  

SOLVENT EFFECTS

➢ Structures

➢ Energies:

- Isomerization

- Reaction

- Bond

- Activation

➢ Spectra: 

- Vibrational 

- Electronic



  

REQUIREMENTS FOR SOLVENT MODELS

➢  Well-defined chemical models:
- Results determined by identities of molecules and solvent

- Systematically calibrated

➢ Built on good gas-phase methods

➢ Applicable to a wide range of systems
- Few or no empirical parameters

- Efficient

- Applicable in principle to any molecule or collection of molecules

General sad rule...
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SOLVENT MODELS

➢ Continuum models

- Solvent is uniform dielectric

- Solvent is polarizable

- Resulting electric field

- Size of cavity is considered

- Dispersion and repulsion are added separately or ignored

- Solute interaction with individual solvent molecules is neglected

➢ Molecular Mechanics:

- Pure mechanics

- Mechanics with fixed QM solute (gas phase or continuum)

- Mixed QM/MM

➢ Statistical models

Gsolv=GelG nonel



  

CHARGE DERIVATION PROCEDURE FOR MD

Geometry optimization with QM

● (R)ESP charges (compatible with many ff): (restrained) electrostatic 

potential charges

Molecular electrostatic 
potential calculation

Charges fit on the 
atoms
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➢ Example: AA side chain parameterization:

- N conformations (angles are sampled with 1° step)

- N Boltzmann weights 

- Weighted charges



  

➢ GAUSSIAN

➢ GAMESS (Open Source)

➢ JAGUAR 

➢ MOPAC (old versions: Open Source)

➢ HyperChem

➢ CPMD (Ab inition dynamics, Open Source)

➢ R.E.D. III (Open Source, charges derivation)

QUANTUM CHEMISTRY SOFTWARE



  

CASE STUDY 1: FLUORINATED AMINO ACIDS 

Goals:

➢ To characterize changes in aliphatic groups upon fluorination

➢ Hydrogen-bonds analysis of fluorinated groups

R= CH
3
, CH

2
F, CHF

2
, CF

3
, CF

2
-CH

3



  

Geometry optimization in HF, MP2, BLYP, B3LYP (6-311G**++)

MODEL: FLUORINATED ETHANE DRIVATIVES



  

 Bond lengths decrease ~0.01 Å (C-C, C-H), ~0.1 Å (C-F)

 Charge redistribution: 

C
F
 ↑ ~ 1 e

C
H
 ↓ ~ 0.1 e

H  ↑ ~ 0.1 e 

q(H) become comparable 
with q(H) in amino acid H-bond donor 

groups 

H
3
- C - C - F

x

|
H

y

+ +

+

FLUORINATION: 

GEOMETRY AND CHARGE IMPACT 



  

D=2.51D=2.17

D=2.58 D=2.65

B3LYP(6-311G**++)

MFEthane DFEthane

TFEthane 2,2 DFPropane

FLUORINATION: DIPOLE MOMENT 

D=∑
i=1

N

qir



  

H-BONDS CHARACTERISTICS

➢ Energy

➢ Length d(H-A)

➢ Angle (D-H-A) 

➢ D-H relative shift: 

➢ Charge transfers:

- Acceptor

- Hydrogen

H

D A

d

Φ

H

D

R(DH)

R(DH)
0

R DH −R DH 0

R DH 0

q A /H =q A/H −q A /H 0



  

H
2
O

CH
3
SH

●-H   HB donor
●       HB acceptor

H-BONDS: USED DONORS AND ACCEPTORS



  

FLUORINATED GROUPS: H-BONDS



  

➢ Geometry changes of ethane fluorinated derivatives have been 

characterized

➢ Fluromethyl groups are weak hydrogen bond donors and acceptors

➢ F and H atoms in fluoromethyl groups should be considered as 

potential acceptors and donors of H bonds

CONCLUSIONS

RESP

MD



  

CASE STUDY 2: SUGAR RINGS CONFORMATIONS 
Goal: conformational analysis of monosaccharide rings 

conformations depending on sugar type, sulfation pattern, 

environment (adjacent saccharides)

C4
1
 - chair S2

O
 - boatC1

4
 - chair 

 System: Glucuronic/Iduronic acids

o

1

4

o

4

1

o

2

 Conformations:

β-D-GlcU α-L-GlcU



  

METHODOLOGY AND RESULTS
➢ Method: 

- Counterions addition (q
system

=0)

- MM Geometry Optimization

- 3-21G Geometry optimization

- B3LYP/6-31+G* Geometry Optimization

- B3LYP/6-311++G** Single Point calculations

E-E
min

, kcal/mol GlcU GlcU-CH
3

Ido Ido-CH
3

Ido2S Ido2S-CH
3

C4
1
-chair 0.88 0-min 0-min 0-min 0.28 5.78

C1
4
-chair 0-min 0.70 2.00 4.66 0-min 0-min

S2
O
-boat 3.42 5.12 2.33 6.64 2.77 7.18



  

LECTURE 6: QM BASICS 
FOR COMPUTATIONAL CHEMISTRY

➢ Milestones of quantum mechanics

➢ Schrödinger equation

➢ Methods in quantum chemistry: HF, DFT, SCF

➢ Geometry optimization, transitional state

➢ Spectroscopy, NMR 

➢ QM/MM and ONIOM

➢ Solvent

➢ Quantum chemistry software

➢ Case study 1: fluorinated amino acids

➢ Case study 2: sugar's ring conformations
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