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LECTURE 7: QM, MD AND NMR 

➢ Basics of NMR 

➢ NMR and QM: GIAO method

➢ NMR and MD: Karplus equation

➢ Software for calculation NMR parameters

➢ Case study 1: GIAO calculations for saccharides

➢ Case study 2: IL-8 interactions with GAGs by NMR and MD 



  

NMR EXPERIMENT
● Nuclear magnetic resonance is a physical phenomenon, in which 

magnetic field is absorbed and re-emitted by nuclei.  

J-couplings:  

3J
H,H

(φ)=Acos2 φ+Bcosφ +C

φ- dihedral

ω
Chemical shift (Δppm): 13C, 1H

Reference: TMS (Tetramethylsilane)

Δppm=(ω-ω
ref

)/ω

Δω=ω-ω
ref

Δω

ω

Magnetic interactions between nuclear 

spin and electron/nuclei spin around ~ 

chemical environment 



  

EXAMPLE: HA SULFATION IN NMR 



  

NMR AND QM

 Chemical shifts of 1H and 13C 

 J-couplings (1H-1H, 13C-1H and 13C-13C)

 Spectrum is known but peaks are not 

assigned

 Molecules geometry (HF, DFT)

 Energies in vacuo 

 NMR parameters: chemical shifts 

and J-couplings (GIAO – gauche 

independent atomic orbitals)

 Parameters are assigned to each 

atom

= invariant (x, y, z)



  

NMR AND MD: KARPLUS EQUATION



J =A cos2
B cos C

➢ Calibration of force fields

➢ Conformational studies

➢ Assistance by NMR spectra assignment  

➢ Example (3 conformations, 3 values of φ):

- NMR: average value

- MD: all values with probabilities => C
1
, C

2
, C

3

- Comparison/Spectra analysis  

J =C1 J 1C2 J 2C3 J 3



  

NMR RESTRAINTS IN MD 

➢ Initially used for refinement of NMR data with a force field

➢ Restraints in MD to be biased to NMR results (decrease confromational 

space) or to fix the studied conformation:

- bonds

- angles

- torsions

- *distance

- *improper torsions

➢ Steered dynamics: 

- folding

- conformational changes

- binding of molecules

Atom A

Atom B

Atom A

Atom B

Parameters: 
- speed (how many steps)
- force at each step ~k (X-X

n
)



  

SOFTWARE 

➢ GIAO: GAUSSIAN

➢ Absolute chemical shifts for proteins:  CS-ROSETTA, SHIFTS, SHIFTX, 

SPARTA, etc.

- statistical (empirical) source of data

- force field and accessible surface area principles

➢ Absolute chemical shifts for other molecules: NO

➢ Changes of chemical shifts: NO

➢ J-couplings: from MD 



  

CASE STUDY 1: 
QM CALCULATIONS OF NMR PARAMETERS 

FOR GAGS MONOSACCHARIDE-COMPONENTS

β-D-GlcU α-L-IdoU

β-D-GlcNAc β-D-GalNAc



  

MONOSACCHARIDES IN GAGS: SULFATION

β-D-GlcU: 
2S, 3S, 23S

α-L-IdoU: 
2S, 3S, 23S

β-D-GlcNAc:
4S, 6S, 46S

β-D-GalNAc: 
4S, 6S, 46S



  

RING CONFORMATIONS

α-L-IdoU, α-L-IdoU(2S), 
β-D-GlcU, β-D-GlcNAc, 
β-D-GalNAc  

α-L-IdoU,    
α-L-IdoU(2S)

α-L-IdoU,    
α-L-IdoU(2S)

 Ring conformation changes in ~ ms, not realistic for MD 

 Influence of sulfation is unknown

 Solvent/ions influence is crucial

 NMR and QM detect differences (Δppm, J-couplings)



  

C5-C6: GG/GT/TG

 gg/gt/tg changes in ~ ps, realistic in MD 

 Influence of sulfation is unknown

 Solvent/ions influence is crucial

 NMR and QM detect differences (J-couplings)

ω=dihedral(C4, C5, C6, O6)



  

MD (HEXAGAGS, 20 ns): GG/GT/TG

β-D-GlcNAc

β-D-GalNAc



  

Initial structures (MM)

Optimized structures (QM, Gaussian)

NMR parameters calculations 
(GIAO, Gaussian)

Comparison with experiment

QM METHODOLOGY FOR NMR PARAMETERS



  

CALCULATED SPECTRUM IN GAUSSIAN



  

COMPARISON WITH THE EXPERIMENT

β-D-GlcNAc: C4
1
, GT-rotamer

Chemical shifts, Δppm
B3LYP/6-311G(2d,p)

J-couplings, Hz
B3LYP/aug-cc-pVDZ)

Average mean error 0.15 1.79

Pearson correlation 0.95 0.89

Spearman correlation 0.93 0.79

 Chemical shifts
NMR experiment

, Δppm
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● Intercept and slope: space for improvement 



  

ENERGETICS
➢ Counterions are essential for these calculations:

- electrostatics impact + another error introduction

- agreement with previous works for Ido2S

➢ All 182 molecules/conformations are done:

- Solvent in general decreases energy barriers

- Methylation changes minimum for conformations

in 7/16 cases in vacuo 5/16 cases in solvent

➢ For GlcNAc and GalNAc C4
1 
is preferred for all 

except 1 molecule; for Ido2S – C1
4
;  for GlcU3S and 

GlcU23S - S2
O
 

➢ NMR parameters can help choosing model

Na+

Na+

Na+

Na+



  

CHEMICAL SHIFTS
➢  Rings conformations do not contribute to chemical shifts

➢  Sulfation affects chemical shifts of:

- Sulfated C

- H bound to sulfated C

➢ Need for experiment to

prove significant differences

 

1

23

4
5



  

J-COUPLINGS

➢  Rings conformations do clearly 

contribute to J-couplings 

➢  Sulfation and methylation do not 

affect J-coupling

➢  Need for experiment to prove 

significant differences and define 

accuracy

J =A cos2
B cos C



β-D-GlcU



  

SUMMARY
 Calculated chemical shifts and J-couplings well reproduce experimental 

values for GlcNAc

 J-couplings differ significanly for different ring conformations, whereas 

chemical shifts do not

 Chemical shifts reflect the pattern of sulfation whereas J-coupling do not

 Further experiments are needed

J-couplings Chemical shifts

Geometry Chemical properties of substituents



  

CASE STUDY 2

CHARACTERIZATION OF THE INTERACTION OF INTERLEUKIN-8 

WITH HYALURONAN, CHONDROITIN SULFATE, DERMATAN 

SULFATE, AND THEIR SULFATED DERIVATIVES BY 

SPECTROSCOPY AND MOLECULAR MODELLING



  

GLYCOSAMINOGLYCANS (GAGs)

Hexose/Hexuronic acid:

➢GlcU

➢IdoU

➢Gal

➢Sulfated derivatives

Hexosamine:

➢GlcNAc

➢GalNAc

➢Sulfated derivatives

GAGs:

➢Hyaluronan

➢Chondroitin sulfate

➢Heparin

➢Heparan sulfate

➢Keratan sulfate

➢Dermatan sulfate



  

INTERLEUKIN-8 

K69

K72

R73

R65

K25

H23

➢ IL-8 interaction with GAGs activates leukocytes

➢ IL-8 dimerization is influenced by GAGs binding

➢ Heparin binding site has been suggested by mutagenesis (Kuschert et al. 1998)



  

 
UNKNOWN:

➢Structures of IL-8 complexes with GAGs

 

➢Quantitative impacts of individual IL-8 residues

➢Specific binding for different GAGs or purely electrostatics 

➢The size of essential GAG unit for IL-8 specific binding

➢GAGs influence on IL-8 dimerization

CHALLENGES AND MOTIVATION 



  

GOAL 

to study GAGs recognition properties of IL-8 analyzing its 

interactions with HA, CS and their sulfated derivatives 

complementing  MD and NMR studies



  

OUTLINE

➢ Docking GAGs to monomeric IL-8 

➢ Binding pose energy analysis

➢ Complementation of MD and NMR results

➢ Specificity of GAGs binding vs electrostatics

➢ Analysis of bound GAGs elongation

➢ Docking GAGs to dimeric IL-8 

➢ GAGs binding vs IL-8 dimerization 



  

DOCKING GAGs TO IL-8: INPUT 

➢ 3IL8 (2.00 Å), monomer (10-77)

➢ Box around heparin binding site 

➢ Ligands: 14 flexible tetra-GAGs 

Hyaluronic acid (PDB ID: 2BVK):

 HA, HA4, HA6, HA46, HA462', HA463', HA462'3'

Chondroitin sulfate (PDB ID: 1C4S):

 CS, CS4,CS6, CS46, CS462', CS463', CS462'3'

Autodock 3



  

K72

R65

K25

H23

Reducing 
end

Non-reducing end

R73

K69

DOCKING OF GAGs TO IL-8: RESULTS 

Highly scored and well represented pose for different GAGs 



  

BINDING POSE ENERGY ANALYSIS

HA, sulfation increase CS, sulfation increase

MD: 10 ns, AMBER99 and GLYCAM06 ff, PBC, counter ions, MM-PBSA

 Increase of HA and CS sulfation favours binding to IL-8



  

PER RESIDUE ENERGY DECOMPOSITION 

Pose energetic profile agrees with experimental data from mutagenesis



  

NMR: HSQC SPECTRUM 

A1 A2 A3 A4

A2

A3

A4

● 1H-15N HSQC spectrum: Heteronuclear Single-Quantum Coherence

1H Chemical shift/ppm

15
N
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1H-15N HSQC spectrum (Heteronuclear Single-Quantum Coherence) 

77 amino acids

NMR: IL-8 AMINO ACIDS ASSIGNMENT



  

NMR TITRATION: PRINCIPLE

1H Chemical shift/ppm

1H Chemical shift/ppm1H Chemical shift/ppm

Δδ= ΔδH 20. 2ΔδN 2



  

Titration Studies with GAGs

Chondroitin-6-sulfate hexasaccharide (C6S)

c(C6S):

0.124 mM

0.244 mM

0.359 mM

0.471 mM

c(IL-8): 0.99 mM

IL-8 TITRATION STUDIES WITH GAGS



  

664 µM C4S

471 µM C6S

Largest chemical shift changes :

K59, V66, V67, K69, A74, E75

IL-8 TITRATION STUDIES WITH CS4 AND CS6



  

MD VS NMR 
MD

NMR

 MD energies and NMR chemical shifts changes agree/complement 

Hexameric CS6



  

MD + NMR: DETECTING SPECIFICITY 

CS4 vs CS6

Difference: -3.6±4.2 kcal/mol

(4 MD tetra GAG; 2 MD hexa GAG)

MM-PBSA and NMR find similar differences for CS4 and CS6 binding



  

ELONGATION OF BOUND GAGS 

➢ Elongation of bound tetrameric GAG neither improves binding, nor changes 

the interaction pattern of IL-8

➢ Tetrameric GAG represents the essential specific unit for IL-8 binding



  

GAGs DOCKING TO DIMERIC IL-8 

ΔG > 0 kcal/mol

Dimeric IL-8 (PDB ID: 1IL8) + CS6

➢ Alternative binding pose for dimeric IL-8 fails to demonstrate stability

➢ The same binding pose of GAGs for dimeric and monomeric IL-8



  

GAGs BINDING VS IL-8 DIMERIZATION 

IL-8 monomers association is favoured by GAGs binding due to electrostatics 

Bound HA463' length 
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INDIVIDUAL IMPACT OF LYS RESIDUES

Receptor IL-8: WT, all DML, DML[25,28,59,69,72]Q

Ligand: hexa HA, CS4, CS6, DS, HE

– Dimethylation effect depends on GAGs

– K59 ≤ K28 << K25 < K69 ≈ K72 

 

o

o

o

o

o

LYS DML



  

Receptor IL-8: WT, E75K

Ligand: hexa HA, CS6, HE

– Binding GAGs: E75K > WT

– Other in silico mutations 75: K,R > A,S > E

– Increased energetic impact of H23 and K25

K75

K25

H23

THE ROLE OF THE RESIDUE IN POSITION 75



  

Receptor IL-8: WT, E75K

Ligand: hexa HA, CS6, HE

 

– Binding GAGs: E75K > WT

– Other in silico mutations 75: K,R > A,S > E

– Increased energetic impact of H23 and K25

– Additional binding pose only for the mutant (through R31)

180

E75KE75K

THE ROLE OF THE RESIDUE IN POSITION 75



  

– N-terminal truncation: no effect 

– C-terminal truncation: strong effect on 

GAG binding strength and pose

-46.2 kcal/mol -34.6 kcal/mol
90

N

C C C

N

N

C C

N N

WTWT

Receptor IL-8: WT, 12-77, 7-72, 7-70, 7-63

Ligand: hexa HA, HA6, HA462', HA463', HE

THE ROLE OF N- AND C-TERMINI: TRUNCATED MUTANTS

N N N N

N

C C C
C

C

WT 12-77 7-72 7-70 7-63

-18.4 kcal/mol



  

➢Structures of IL-8 complexes with GAGs? 

- We find highly scored and representative GAGs binding pose 

➢Quantitative impacts of individual IL-8 residues?

- We find the residues crucial for GAGs binding

➢Specific binding for different GAGs or purely electrostatics? 

- Increase of sulfation improves binding though specificity is also observed

➢The size of essential GAG unit for IL-8 specific binding?

- Tetrameric GAG is essential minimal unit

➢GAGs influence on IL-8 dimerization?

- Binding two GAGs to dimeric IL-8 assists dissociation of the dimer

CASE STUDY: SUMMARY 



  

LECTURE 7: QM, MD AND NMR 

➢ Basics of NMR 

➢ NMR and QM: GIAO method

➢ NMR and MD: Karplus equation

➢ Software for calculation NMR parameters

➢ Case study 1: GIAO calculations for saccharides

➢ Case study 2: IL-8 interactions with GAGs by NMR and MD 
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